Themed collection Organ-, body- and disease-on-a-chip systems

56 items
Editorial

Advances in organ-, body-, and disease-on-a-chip systems

Thought leader Michael Shuler provides an update on the Lab on a Chip organ-, body- and disease- on-a-chip thematic collection.

Graphical abstract: Advances in organ-, body-, and disease-on-a-chip systems
From the themed collection: Organ-, body- and disease-on-a-chip systems
Editorial

Organ-, body- and disease-on-a-chip systems

Thought leader Michael Shuler introduces the Lab on a Chip organ, body and disease on a chip thematic collection.

Graphical abstract: Organ-, body- and disease-on-a-chip systems
From the themed collection: Organ-, body- and disease-on-a-chip systems
Open Access Perspective

Personalised organs-on-chips: functional testing for precision medicine

Organs-on-chips can be ‘personalised’ so they can be used as functional tests to inform clinical decision-making for specific patients.

Graphical abstract: Personalised organs-on-chips: functional testing for precision medicine
From the themed collection: Organ-, body- and disease-on-a-chip systems
Open Access Perspective

Maximizing the impact of microphysiological systems with in vitroin vivo translation

The full impact of MPS technologies will be realized only when robust approaches for in vitroin vivo (MPS-to-human) translation are developed and utilized.

Graphical abstract: Maximizing the impact of microphysiological systems with in vitro–in vivo translation
From the themed collection: Organ-, body- and disease-on-a-chip systems
Perspective

Organ-on-a-chip devices advance to market

We reviewed the foundational technologies underlying the commercialization efforts of the current prominent organ-on-a-chip start-ups.

Graphical abstract: Organ-on-a-chip devices advance to market
From the themed collection: Organ-, body- and disease-on-a-chip systems
Critical Review

Tumor-on-a-chip for integrating a 3D tumor microenvironment: chemical and mechanical factors

Tumor progression is significantly influenced by factors such as mechanical force, shear stress, chemotaxis, and hypoxia. Here, we reviewed recent achievements and presented potential directions for tumor-on-a-chip systems in the future.

Graphical abstract: Tumor-on-a-chip for integrating a 3D tumor microenvironment: chemical and mechanical factors
From the themed collection: Organ-, body- and disease-on-a-chip systems
Critical Review

Development and application of human skeletal muscle microphysiological systems

Human microphysiological systems were developed to model skeletal muscle and nerve-skeletal muscle interactions. These systems can be applied to a number of major disease states involve skeletal muscle, including type 2 diabetes, muscular dystrophy, sarcopenia and cachexia arising from cancer or heart disease.

Graphical abstract: Development and application of human skeletal muscle microphysiological systems
From the themed collection: Organ-, body- and disease-on-a-chip systems
Critical Review

Applications of tumor chip technology

By surpassing the predictive accuracy of conventional 2D cell culture models, tumor chips can reduce reliance on animal models in line with the 3Rs initiative and eliminate false positive selection of ineffective or toxic drugs earlier in the drug development pipeline, saving time and resources. Most importantly, better predictability of human drug response will reduce human risk and improve patient outcomes.

Graphical abstract: Applications of tumor chip technology
From the themed collection: Organ-, body- and disease-on-a-chip systems
Critical Review

Powering ex vivo tissue models in microfluidic systems

This Frontiers review analyzes the rapidly growing microfluidic strategies that have been employed in attempts to create physiologically relevant ‘organ-on-chip’ models using primary tissue removed from a body (human or animal).

Graphical abstract: Powering ex vivo tissue models in microfluidic systems
From the themed collection: Organ-, body- and disease-on-a-chip systems
Open Access Critical Review

Microsensor systems for cell metabolism – from 2D culture to organ-on-chip

We discuss microsensors for cell culture monitoring from 2D culture to organ-on-chip systems, including sensor principles, fabrication and culture formats.

Graphical abstract: Microsensor systems for cell metabolism – from 2D culture to organ-on-chip
From the themed collection: Organ-, body- and disease-on-a-chip systems
Critical Review

Tumour-vessel-on-a-chip models for drug delivery

In this review, we present the use of tumour-vessels-on-a-chip to investigate and screen nanoparticles for cancer targeted drug delivery.

Graphical abstract: Tumour-vessel-on-a-chip models for drug delivery
From the themed collection: Organ-, body- and disease-on-a-chip systems
Open Access Communication

Monitoring transient cell-to-cell interactions in a multi-layered and multi-functional allergy-on-a-chip system

Multi-functional LOC for transient allergy monitoring.

Graphical abstract: Monitoring transient cell-to-cell interactions in a multi-layered and multi-functional allergy-on-a-chip system
From the themed collection: Organ-, body- and disease-on-a-chip systems
Communication

Human stomach-on-a-chip with luminal flow and peristaltic-like motility

We created a human stomach-on-a-chip by using an innovative microfluidic imaging platform housing human gastric organoids (hGOs) with peristaltic luminal flow.

Graphical abstract: Human stomach-on-a-chip with luminal flow and peristaltic-like motility
From the themed collection: Organ-, body- and disease-on-a-chip systems
Communication

“Open-top” microfluidic device for in vitro three-dimensional capillary beds

We introduce a novel microfluidic device to co-culture a blood vessel network and cell tissues in an in vivo-like niche.

Graphical abstract: “Open-top” microfluidic device for in vitro three-dimensional capillary beds
From the themed collection: Organ-, body- and disease-on-a-chip systems
Paper

Mechanotransduction-on-chip: vessel-chip model of endothelial YAP mechanobiology reveals matrix stiffness impedes shear response

Walther et al. employed vessel-chip technology to study how matrix stiffness and shear stress combine to influence endothelial cell YAP mechanobiology, discovering that stiff matrices impede the protective effects of physiologic shear stress.

Graphical abstract: Mechanotransduction-on-chip: vessel-chip model of endothelial YAP mechanobiology reveals matrix stiffness impedes shear response
From the themed collection: Organ-, body- and disease-on-a-chip systems
Open Access Paper

Microfluidic organ-on-a-chip model of the outer blood–retinal barrier with clinically relevant read-outs for tissue permeability and vascular structure

This organ-on-a-chip device of the outer blood retinal barrier will allow future studies of complex disease mechanisms and treatments of visual disorders using clinically relevant endpoints in vitro.

Graphical abstract: Microfluidic organ-on-a-chip model of the outer blood–retinal barrier with clinically relevant read-outs for tissue permeability and vascular structure
From the themed collection: Organ-, body- and disease-on-a-chip systems
Paper

A microfluidic patterned model of non-alcoholic fatty liver disease: applications to disease progression and zonation

Non-alcoholic fatty liver disease (NAFLD) involves a progressive increase of lipid accumulation. We created a microfluidic progressive NAFLD platform using free fatty acid gradients to capture the wide spectrum of disease conditions in a single continuous liver tissue.

Graphical abstract: A microfluidic patterned model of non-alcoholic fatty liver disease: applications to disease progression and zonation
From the themed collection: Organ-, body- and disease-on-a-chip systems
Paper

Effective bioprinting resolution in tissue model fabrication

We compare current bioprinting technologies for their effective resolutions in the fabrication of micro-tissues towards construction of biomimetic microphysiological systems.

Graphical abstract: Effective bioprinting resolution in tissue model fabrication
From the themed collection: Organ-, body- and disease-on-a-chip systems
Open Access Paper

Digestion-on-a-chip: a continuous-flow modular microsystem recreating enzymatic digestion in the gastrointestinal tract

A three-compartment, miniaturized system to pretreat samples with artificial saliva, gastric juice, duodenal juice and bile for gut-on-a-chip applications.

Graphical abstract: Digestion-on-a-chip: a continuous-flow modular microsystem recreating enzymatic digestion in the gastrointestinal tract
From the themed collection: Organ-, body- and disease-on-a-chip systems
Paper

A high-throughput microfluidic microphysiological system (PREDICT-96) to recapitulate hepatocyte function in dynamic, re-circulating flow conditions

Microphysiological systems (MPSs) are dynamic cell culture systems that provide micro-environmental and external cues to support physiologically relevant, organ-specific functions.

Graphical abstract: A high-throughput microfluidic microphysiological system (PREDICT-96) to recapitulate hepatocyte function in dynamic, re-circulating flow conditions
From the themed collection: Organ-, body- and disease-on-a-chip systems
Open Access Paper

Development of a multicellular pancreatic tumor microenvironment system using patient-derived tumor cells

The development of drugs to treat cancer is hampered by the inefficiency of translating pre-clinical in vitro monoculture and mouse studies into clinical benefit.

Graphical abstract: Development of a multicellular pancreatic tumor microenvironment system using patient-derived tumor cells
From the themed collection: Organ-, body- and disease-on-a-chip systems
Paper

Two-way communication between ex vivo tissues on a microfluidic chip: application to tumor–lymph node interaction

The first microfluidic device for co-culture of two tissue slices under continuous recirculating flow was used to model tumor-induced immunosuppression.

Graphical abstract: Two-way communication between ex vivo tissues on a microfluidic chip: application to tumor–lymph node interaction
From the themed collection: Organ-, body- and disease-on-a-chip systems
Paper

Introducing an automated high content confocal imaging approach for Organs-on-Chips

A novel, automated workflow to capture and analyse confocal images of Organ-Chips allowing detailed assessment of cellular phenotype in situ.

Graphical abstract: Introducing an automated high content confocal imaging approach for Organs-on-Chips
From the themed collection: Organ-, body- and disease-on-a-chip systems
Open Access Paper

Non-invasive sensing of transepithelial barrier function and tissue differentiation in organs-on-chips using impedance spectroscopy

Combining impedance spectroscopy with electrical simulation to reveal transepithelial barrier function and tissue structure of human intestinal epithelium cultured in an organ-on-chip.

Graphical abstract: Non-invasive sensing of transepithelial barrier function and tissue differentiation in organs-on-chips using impedance spectroscopy
From the themed collection: Organ-, body- and disease-on-a-chip systems
Paper

Adipose-on-a-chip: a dynamic microphysiological in vitro model of the human adipose for immune-metabolic analysis in type II diabetes

Infiltration of immune cells into adipose tissue is associated with chronic low-grade inflammation in obese individuals.

Graphical abstract: Adipose-on-a-chip: a dynamic microphysiological in vitro model of the human adipose for immune-metabolic analysis in type II diabetes
From the themed collection: Organ-, body- and disease-on-a-chip systems
Open Access Paper

A lung/liver-on-a-chip platform for acute and chronic toxicity studies

A lung/liver-on-a-chip platform with metabolic capability over 28 days: a fit-for-purpose microfluidic system for toxicity assessment of pulmonary toxicants.

Graphical abstract: A lung/liver-on-a-chip platform for acute and chronic toxicity studies
From the themed collection: Organ-, body- and disease-on-a-chip systems
Paper

Tumor-on-a-chip platform to investigate progression and drug sensitivity in cell lines and patient-derived organoids

We created a tumor platform to study cell proliferation, angiogenesis, migration, intravasation, and treatments.

Graphical abstract: Tumor-on-a-chip platform to investigate progression and drug sensitivity in cell lines and patient-derived organoids
From the themed collection: Organ-, body- and disease-on-a-chip systems
Paper

An integrated adipose-tissue-on-chip nanoplasmonic biosensing platform for investigating obesity-associated inflammation

A biomimetic ‘adipose-tissue-on-chip’ integrated with nanoplasmonic biosensors for in situ multiplexed cytokine secretion analysis of obese adipose tissue.

Graphical abstract: An integrated adipose-tissue-on-chip nanoplasmonic biosensing platform for investigating obesity-associated inflammation
From the themed collection: Organ-, body- and disease-on-a-chip systems
Paper

An integrated microfluidic/microelectrode array for the study of activity-dependent intracellular dynamics in neuronal networks

A microfluidics/MEA platform was developed to control neuronal activity while imaging intracellular dynamics within reconstituted neuronal networks.

Graphical abstract: An integrated microfluidic/microelectrode array for the study of activity-dependent intracellular dynamics in neuronal networks
From the themed collection: Organ-, body- and disease-on-a-chip systems
Paper

Development of a biomimetic liver tumor-on-a-chip model based on decellularized liver matrix for toxicity testing

A tumor-on-a-chip platform with integration of decellularized liver matrix offers better biomimicry of tumor microenvironment and enhanced toxicity testing.

Graphical abstract: Development of a biomimetic liver tumor-on-a-chip model based on decellularized liver matrix for toxicity testing
From the themed collection: Organ-, body- and disease-on-a-chip systems
Open Access Paper

3D microfluidic ex vivo culture of organotypic tumor spheroids to model immune checkpoint blockade

Microfluidic culture has the potential to revolutionize cancer diagnosis and therapy.

Graphical abstract: 3D microfluidic ex vivo culture of organotypic tumor spheroids to model immune checkpoint blockade
From the themed collection: Lab on a Chip Recent HOT Articles
Paper

A 96-well microplate bioreactor platform supporting individual dual perfusion and high-throughput assessment of simple or biofabricated 3D tissue models

A microplate-based bioreactor was developed to support dual perfusion of parenchymal and barrier tissues for high-throughput microphysiological system (MPS) studies.

Graphical abstract: A 96-well microplate bioreactor platform supporting individual dual perfusion and high-throughput assessment of simple or biofabricated 3D tissue models
From the themed collection: Organ-, body- and disease-on-a-chip systems
Paper

A glass-based, continuously zonated and vascularized human liver acinus microphysiological system (vLAMPS) designed for experimental modeling of diseases and ADME/TOX

We developed a glass based, vascularized human biomimetic liver MPS recreating oxygen zonation present in the liver acinus.

Graphical abstract: A glass-based, continuously zonated and vascularized human liver acinus microphysiological system (vLAMPS) designed for experimental modeling of diseases and ADME/TOX
From the themed collection: Organ-, body- and disease-on-a-chip systems
Paper

UniChip enables long-term recirculating unidirectional perfusion with gravity-driven flow for microphysiological systems

UniChip enables recirculating unidirectional perfusion with gravity-driven flow, facilitating reliable and cost-effective integration of shear stress-sensitive tissues into microphysiological systems.

Graphical abstract: UniChip enables long-term recirculating unidirectional perfusion with gravity-driven flow for microphysiological systems
From the themed collection: Lab on a Chip Recent HOT Articles
Paper

Design and fabrication of a liver-on-a-chip platform for convenient, highly efficient, and safe in situ perfusion culture of 3D hepatic spheroids

This work presents a biomimetic and reversibly-assembled liver-on-a-chip platform for building a 3D liver spheroid model.

Graphical abstract: Design and fabrication of a liver-on-a-chip platform for convenient, highly efficient, and safe in situ perfusion culture of 3D hepatic spheroids
From the themed collection: Organ-, body- and disease-on-a-chip systems
Paper

Microphysiological flux balance platform unravels the dynamics of drug induced steatosis

Sensor-integrated liver chip unravels risks of drug-induced fatty liver disease associated with prescription drug use.

Graphical abstract: Microphysiological flux balance platform unravels the dynamics of drug induced steatosis
From the themed collection: Organ-, body- and disease-on-a-chip systems
Paper

Engineering cell heterogeneity into organs-on-a-chip

To improve predictive efficacy of organ-on-a-chip devices, developers must consider cell heterogeneity.

Graphical abstract: Engineering cell heterogeneity into organs-on-a-chip
From the themed collection: Lab on a Chip Recent HOT Articles
Paper

Formation of arrays of planar, murine, intestinal crypts possessing a stem/proliferative cell compartment and differentiated cell zone

A simple planar platform that recapitulates the compartmentalization and physiological responses of mouse colon epithelium is presented.

Graphical abstract: Formation of arrays of planar, murine, intestinal crypts possessing a stem/proliferative cell compartment and differentiated cell zone
From the themed collection: Organ-, body- and disease-on-a-chip systems
Paper

A pumpless body-on-a-chip model using a primary culture of human intestinal cells and a 3D culture of liver cells

A pumpless GI–Liver system using primary human intestinal epithelial cells serves as an improved model for drug studies.

Graphical abstract: A pumpless body-on-a-chip model using a primary culture of human intestinal cells and a 3D culture of liver cells
From the themed collection: Organ-, body- and disease-on-a-chip systems
Paper

Real-time observation of leukocyte–endothelium interactions in tissue-engineered blood vessel

Human cell-based 3D tissue constructs play an increasing role in disease modeling and drug screening.

Graphical abstract: Real-time observation of leukocyte–endothelium interactions in tissue-engineered blood vessel
From the themed collection: Organ-, body- and disease-on-a-chip systems
Paper

Online oxygen monitoring using integrated inkjet-printed sensors in a liver-on-a-chip system

Integrated inkjet-printed sensors in a liver-on-a-chip allow online oxygen monitoring, showing differential hepatocyte respiratory behaviour and an oxygen gradient.

Graphical abstract: Online oxygen monitoring using integrated inkjet-printed sensors in a liver-on-a-chip system
From the themed collection: Organ-, body- and disease-on-a-chip systems
Paper

A multiplexed microfluidic system for evaluation of dynamics of immune–tumor interactions

A system for perfusing and interacting tumor fragments and immune cells and testing drug response with image analytics is reported.

Graphical abstract: A multiplexed microfluidic system for evaluation of dynamics of immune–tumor interactions
From the themed collection: Lab on a Chip Recent HOT Articles
Paper

A microengineered human corneal epithelium-on-a-chip for eye drops mass transport evaluation

A microengineered human corneal epithelium-on-a-chip is developed to mimic in vivo anatomical and physiological conditions for topical ophthalmological drug testing.

Graphical abstract: A microengineered human corneal epithelium-on-a-chip for eye drops mass transport evaluation
From the themed collection: Organ-, body- and disease-on-a-chip systems
Paper

Microfluidic lung airway-on-a-chip with arrayable suspended gels for studying epithelial and smooth muscle cell interactions

A novel lung airway-on-a-chip system that uses a suspended hydrogel to enable epithelial–matrix–smooth muscle cell interactions.

Graphical abstract: Microfluidic lung airway-on-a-chip with arrayable suspended gels for studying epithelial and smooth muscle cell interactions
From the themed collection: Organ-, body- and disease-on-a-chip systems
Paper

Human brain organoid-on-a-chip to model prenatal nicotine exposure

We present a new strategy to generate stem cell based human brain organoids using an organ-on-a-chip system that allows us to model prenatal nicotine exposure.

Graphical abstract: Human brain organoid-on-a-chip to model prenatal nicotine exposure
From the themed collection: In celebration of Chinese New Year 2020
Paper

Nanofiber membrane supported lung-on-a-chip microdevice for anti-cancer drug testing

A PLGA nanofiber membrane supported lung-on-a-chip microdevice was developed to model the alveolar microenvironment for anti-cancer drug testing.

Graphical abstract: Nanofiber membrane supported lung-on-a-chip microdevice for anti-cancer drug testing
From the themed collection: In celebration of Chinese New Year 2020
Paper

A compartmentalized microfluidic chip with crisscross microgrooves and electrophysiological electrodes for modeling the blood–retinal barrier

This work presents a new microfluidic chip to facilitate multicellular interactions and cell barrier function monitoring in real time.

Graphical abstract: A compartmentalized microfluidic chip with crisscross microgrooves and electrophysiological electrodes for modeling the blood–retinal barrier
From the themed collection: Organ-, body- and disease-on-a-chip systems
Paper

A multi-throughput multi-organ-on-a-chip system on a plate formatted pneumatic pressure-driven medium circulation platform

A multi-throughput multi-organ-on-a-chip system was formed on a pneumatic pressure-driven medium circulation platform as a novel type of microphysiological system.

Graphical abstract: A multi-throughput multi-organ-on-a-chip system on a plate formatted pneumatic pressure-driven medium circulation platform
From the themed collection: Organ-, body- and disease-on-a-chip systems
Paper

Cardiac microphysiological devices with flexible thin-film sensors for higher-throughput drug screening

Contractility and rate of human stem cell heart tissues.

Graphical abstract: Cardiac microphysiological devices with flexible thin-film sensors for higher-throughput drug screening
From the themed collection: Organ-, body- and disease-on-a-chip systems
Open Access Paper

Mimicking arterial thrombosis in a 3D-printed microfluidic in vitro vascular model based on computed tomography angiography data

Studying blood clotting in stereolithography 3D-printed microfluidic chips with endothelialised vascular structures.

Graphical abstract: Mimicking arterial thrombosis in a 3D-printed microfluidic in vitro vascular model based on computed tomography angiography data
From the themed collection: Organ-, body- and disease-on-a-chip systems
Paper

Organs-on-Chips with combined multi-electrode array and transepithelial electrical resistance measurement capabilities

Combined integration of TEER and MEA sensors in a single endothelialized Organ-on-Chip platform.

Graphical abstract: Organs-on-Chips with combined multi-electrode array and transepithelial electrical resistance measurement capabilities
From the themed collection: Organ-, body- and disease-on-a-chip systems
Paper

Simultaneous electrical recording of cardiac electrophysiology and contraction on chip

We report a new heart-on-chip design capable of electrical stimulation, recording of growth, contraction and activating map from in vitro-cultured human cardiac tissues.

Graphical abstract: Simultaneous electrical recording of cardiac electrophysiology and contraction on chip
From the themed collection: Organ-, body- and disease-on-a-chip systems
Paper

A disease model of diabetic nephropathy in a glomerulus-on-a-chip microdevice

A biomimetic glomerulus-on-a-chip microdevice was created to recapitulate a disease model of diabetic nephropathy.

Graphical abstract: A disease model of diabetic nephropathy in a glomerulus-on-a-chip microdevice
From the themed collection: Organ-, body- and disease-on-a-chip systems
Paper

In vitro nasal mucosa gland-like structure formation on a chip

The emergence of microfluidic epithelial models using diverse types of cells within a physiologically relevant microenvironment has the potential to be a powerful tool for preclinical drug screening and pathophysiological studies.

Graphical abstract: In vitro nasal mucosa gland-like structure formation on a chip
From the themed collection: Organ-, body- and disease-on-a-chip systems
Paper

A vascularized and perfused organ-on-a-chip platform for large-scale drug screening applications

A vascularized, perfused organ-on-a-chip platform suitable for large-scale drug efficacy/toxicity screening.

Graphical abstract: A vascularized and perfused organ-on-a-chip platform for large-scale drug screening applications
From the themed collection: Organ-, body- and disease-on-a-chip systems
Paper

Bioprinted thrombosis-on-a-chip

A novel bioprinted model of thrombosis was developed to study thrombosis and thrombolysis in vitro.

Graphical abstract: Bioprinted thrombosis-on-a-chip
From the themed collection: Organ-, body- and disease-on-a-chip systems
56 items

About this collection

A collection of papers and reviews on organ-, body- and disease-on-a-chip research focussing on the interface between the technological advancements and high impact applications of organ-, body- and disease-on-a-chip technologies. This on-going collection is collated by Thought leader Michael Shuler and the Lab on a Chip Editorial Board.

More details about the collection can be found at rsc.li/blog-organonachip

Spotlight

Advertisements